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1.	 INTRODUCTION 

Due to technological developments, globalization, impor-
tant companies mergers and to environmental awareness, 
global marketing has been changing. Economic changes, 
market dynamics and increasing competition are all part of 
world globalization, which in turn, intensifies international 
trade of services and products and promotes cultural exchan-
ge and a recurring share of information. Such modifications 
may force organizations to create innovate solutions to stay 
in the market, as they signify raising the competition. Facing 
this scenario, the companies now seek a new management 
model based mainly on reducing costs and profit margins 
of their products. Also, they strive considerable improving 
distribution related services so they can compete with other 
companies. Generally speaking, production costs and pro-
ducts quality tend to match regardless of the company res-
ponsible for the manufacturing process. For that reason, 
optimizing operations - that is, making products reach their 
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final customer with a fair cost, in the right amount and wi-
thin expected time - is the greater differential.  

In the context of the industries, the major problem is op-
timizing the product system, in which production manage-
ment and planning are of great importance. Optimizing is 
essential to keep the competitivity between industries and 
operating costs reduction flowing. It involves establishing 
production rates, material maintenance policy, adjusting 
strategies, assigning and designating products to their re-
spective machines, and, finally, regulating a policy for deliv-
ering the goods to the customer.    

Nowadays, brazilian companies are going through a phase 
in which capital gains means survival. Just in time manufac-
turing (Lean Manufacturing), i.e. an organizational struc-
ture prepared to meet product demand at any time using 
reduced supplies, offers advantages related to productivity, 
efficiency and quality. Given that, it becomes useful devel-
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oping techniques that can assure entrepreneurs and manag-
ers they are working with a product system that, when well 
managed, can increase competitive advantages. 

Oil refineries are one of many productive sectors that 
seek performance improvement. One of the problems that 
need optimizing in this sector is production planning (sched-
uling). Part of this problem involves products storage and 
distribution. Due to its combinatorial feature, the optimal 
solution is hard to reach. For this reason, has been the sub-
ject of many researches, such as Jie et Ierapetritou (2003), 
Joly Moro et Pinto (2002) and Wu et al. (2005). Moro (2000) 
emphasizes that many issues involving oil refinery are de-
scribed as problems of Mixed Integer Linear Programming 
(MILP) and therefore solved with the help of commercial 
computational packages. Therefore, due to its nature, the 
increasing number of integer variables makes the utilization 
of these software impracticable, as they demand excessive 
computational time. 

This background justifies the pursuit for other approaches 
to solve this problem. In consequence, this research was done 
focusing in finding a more efficient computation methodolo-
gy compared to classic ones (the Branch-and-Bound method, 
for instance) in order to solve a MILP problem. It specifically 
sought developing a MILP model to solve a problem related to 
diesel transportation and storage in an oil refinery, expressing 
a discrete time and decide applying the Branch-and-Bound 
method. Then, a new methodology was developed to solve 
the same model, applying Genetic Algorithm integrated to 
Linear Programming (PL). The choice to apply Genetic Algo-
rithm when searching for adequate solutions to solve the 
problem here discussed within a reasonable computational 
time was made due to its validated efficiency, versatility and 
strength. Among the existing algorithms, some that could also 
be used are: Tabu Search, Simulated Annealing and Differen-
tial Evolution to solve discrete problems. 

MILP and Genetic Algorithm have been used to solve 
many optimization problems not only in oil refineries, but 
also in other fields. Some researches as Thunberg et Ögren 
(2011), Subbaraj, Rengaraj et Salivahanan (2011), Wang et 
Tang (2011), Zhang et Shang (2009), Floudas et Lin (2005), 
Duan et Wang (2011), Morabito et Abuabara (2008), Car-
rano et al. (2005), Almeida et al. (2003) and Liu et al. (2011) 
was developed using these operational research techniques.

2.	2. THEORETICAL FRAMEWORK

1.1 Linear Programming (LP) 

Linear Programming (LP) is one of the most applied and 
important methods of Operational Research. Both the sim-

plicity of the model involved and the availability of an ade-
quate solution technique programmable in computers, such 
as the Simplex method - described by Dantzig (1963) - makes 
applying LP easy. This technique is widely used, as it has the 
ability to model important and complex decision problems. 
The Simplex method description can be found on Zionts 
(1974). An LP problem consists of:

1.	 A linear function formed with decision variables 
called objective function, whose value must be op-
timized; 

2.	 A interdependent relationship between decision vari-
ables, called constraints, expressed by a system of lin-
ear equations or inequations, called constraints; 

3.	 Decision variables that must either be positive or 
null.

Equation (1) demonstrates LP problem formulation:

(1)

where cj, aij and bi are known constants to any i and j; xj 
are non-negative variables. Problem contraints can be mol-
ded into equations by adding a (non-negative) slack variable 
xn+ i, if i-th is ≤, and by subtracting a (non-negative) slack va-
riable, xn+k, if k-th is ≥. Assuming that when slack variables 
are introduced, m + n variables appears. Then, it can be re-
presented in matrix form, as shown in equation (2):

(2)

where c is a vector line of (n + m) order, A is a matrix m’ (m+ 
n), x is a vector column of (m + n) order and b is a vector column 
of order m.

2.1.1 Integer Programming (IP) and Mixed Integer Pro-
gramming (MIP) 

Real life problems demand using variables that can assu-
me only integer values.  This characterizes an Integer Pro-
gramming (IP) problem. Equation (3) demonstrates this type 
of problem:
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(3)

where  are the variables,   are vari-
able functions x1, x2,...,xn, and  are known constants. If 
I = N, i.e. all variables are integer, then the problem above is 
necessarily a IP one. If , it is said to be a Mixed Integer 
Programming (MIP) problem.

2.1.2 Integer Linear Programming (ILP) and Mixed Inte-
ger Linear Programming (MILP) 

In most IP problems, functions  in equation 
(3) are linear and the model can be described as shown in 
equation 4: 

(4)

where cj, aij and bi are known constants to any i and j, 
and xj are non-negative variables. Which states that if I = 
N, i.e. all variables are integer, then we have an Integer 
Linear Programming problem. If , it is said to be a 
Mixed Integer Linear Programming (PLIM) problem.

Many practical ILP models restrict integer variables to 
only take values of “0” or “1”; these are called Binary Integer 
Linear Programming problems. These variables are used to 
make yes (“1”) or no (“0”) decisions. 

Many scheduling problems can be expressed as MILP 
problems as their mathematical optimization models invol-
ve continuous and discrete variables that must satisfy a set 
of inequality and equality linear constraints (Moro, 2000). 
Resolution for Mixed Integer Linear Optimization problems, 
understood as to obtain an optimal solution, can be harsh 
because of their combinatorial nature. It is considered that 
the space of integer solutions consists of a finite number of 
points. Even on mixed cases, the search space is primarily 
defined by integer variables. An enumerated method is a 
data method that analyzes every point, even when using its 
most basic language. This can be defined as an exhaustive 
search. This simple method can become even more efficient 
if enumerate only part of the candidate’s solutions while dis-

carding the non-promising points. The efficiency of a search 
algorithm relies on its capacity to eliminate non promising 
solution points. The Branch-and-Bound method (Zionts, 
1974) and implicit enumeration (Taha, 1975). These techni-
ques allow using problem relaxation strategies for estima-
ting within reasonable time the value of the best solution 
that can be found in each segment of the enumeration. 

2.2 Computational Tools for Optimization Problems

Many multifaceted software are available for solving re-
search and optimization problems. Developments seen in 
LP motivated breakthroughs to solve these problems. Linear 
Programming solving software use the Simplex method and/
or the interior point search method. For ILP and MILP pro-
blems, most software use the Branch and Bound method. 

Pinto (2000) made a chart listing several software and its 
details, such as: developer information, computing platform 
used, input formats, problems that can be solved through 
the software and farther relevant data.     

Among these software, it is important to point out: 

LINGO 8.0 (LINDO Systems Inc., 2002): of easy application, 
this solver is able to analyze and find optimal solutions for 
both large Linear and Non-Linear Programming problems. 
Integer models are solved using the branch-and-bound me-
thod. 

ILOG CPLEX 8.0 (ILOG CPLEX, 2002): developed to solve LP 
problems, the software also solves Quadratic Programming, 
MIP and Network Flow problems.

2.3 Genetic Algorithm (GA)

Initially proposed by Holland (1975), GA was inspired 
by the biological mechanism of evolution, which was ba-
sed on Darwin’s works about the origin of the species and 
natural genetic – the last being primarily due to Mendel. 
Among GA definitions found in literature, it is worth mentio-
ning Tanomaru’s (1995), who defines it as a computational 
research method based on natural evolution and genetics 
mechanisms. In a GA, a population of candidate solutions to 
the problem evolves accordingly to probabilistic operators 
conceived through biologic metaphors; generations tend 
to present better solutions each time the evolving process 
happens. GA is considered efficient to generate optimal or 
near-optimal solutions to a variety of problems, as it doesn’t 
present many the of the limitations found in traditional re-
search methods. Besides, in most cases, GA is capable to 
find the solution to problems that other optimization strate-
gies were unable to conclude.  
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GA differs from conventional optimization and search 
procedures in several fundamental ways. Goldberg (1989) 
summarized it in four aspects:  

•	 works with a population of points instead of a single 
point;

•	 works in a space of solution coding, not in the space 
of direct search; 

•	 requires only information about value of objective 
function for each population member, and do not re-
quire derivative or other auxiliary knowledge; 

•	 uses probabilistic transition, not deterministic rules.

GA works with an array of individuals (population); each 
individual represents a feasible solution. The function to be 
optimized represents the environment, in which the initial 
population is located.  Due to species evolution and natu-
ral genetic mechanisms, it is expected that the fittest indivi-
duals will be more likely to reproduce. It is also hoped that 
every new generation will be best fitted to the environment. 
The next generation will an evolution of the last one and 
for this to happen the fittest individuals should have higher 
probability of been selected to compose the new breed. Ho-
wever, random samples of the population can also be used. 
Selection is the stage during which individuals are selectively 
chosen. The next step is applying genetic operators, which 
will act on genotypes generating new individuals, also called 
search mechanisms (Holland, 1975). Among those mecha-
nisms, the most frequently applied are crossover (also called 
recombination) and mutation. If selection, recombination 
and mutation operations succeed, a better generation will 
be hopefully created.  

3.	PROBLEM MODEL

This work developed a technique to solve a short term 
scheduling problem in a sub-system of an oil refinery. The 
complexity of production planning operations, which tend 
to create large combinatorial problems, and computational 
processing limitations justifies the search for techniques 
that are more efficient. Scheduling problems in oil refineries 
are formulated as mixed integer programming models and 
are solved using exact techniques; however, implementing 
these methods to find the solution is impracticable as they 
can be very time consuming. The subsystem studied in this 
research involves activities such as diesel storage and trans-
portation.  Receiving diesel deliveries in the tanks, storing 
fuel and shipping the product to final costumers are activi-
ties used to develop and solve optimization models for sche-
duling.    

The mathematical model developed for this system aims 
to find a sequence that meets the limitations and the re-
quest for minimal cost of diesel handling and storage. This 
problem was modelled using the arrangement of the tan-
king park, activities restrictions and diesel oil demand as 
the input parameter data and activities management as 
the output parameter data. Figure 1 shows the relationship 
between the parameters mentioned above and the mathe-
matical model.

Scenario
Tanking

 

 

Mathematical
model  

Operating
restrictions

Diesel
demand 

Activity
Management

Figure 1. Mathematic Model – Input and Output 
Source: Barboza (2005) 

The following assumptions and operational constraints 
were considered in the problem of modeling:

•	 Diesel volumes stored in the tanks are known;

•	 The tanks are dedicated, i.e. store a single type of 
diesel;

•	 All tanks must be available during the planning ho-
rizon, i.e. they must not have maintenance or any 
operation that would prohibit its use;

•	 Transition times between tasks are not considered 
because they are negligible in relation to other ope-
rations;

•	 Each of the tanks can not perform charging and dis-
charging operations simultaneously;

•	 Each tank can receive from a single source at a given 
time interval;

•	 Each tank can send to a single destination at a given 
time interval;

•	 The operational constraints of minimum/maximum 
flow of receipt and dispatch of products must be res-
pected; 

•	 The tanks may not be with volume below the mini-
mum nor above the stipulated maximum;
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•	 When a tank starts the load receipt, you must do so 
to it total filler;

•	 After filling in, the tank should stand still for a mini-
mum period stipulated for rest and analysis of the 
stored product. After this time the tank will be avai-
lable for sending;

•	 The whole lot required by the customer must be 
pumped continuously;

•	 The receiving and sending demands can be met at 
any time of the planning horizon.

•	 For the resolution of the model the following tech-
niques were used: Branch and Bound, Simplex Me-
thod and GA. 

4.	MODEL MIXED INTEGER LINEAR PROGRAMMING 

The first mathematical model for the problem of transfer 
and storage using the MILP modeling with uniform discreti-
zation in time. continuous, integer and binary variables are 
used. The binary variables represent decisions to be taken. 
Any event must start and end at the beginning of each time 
interval. As mentioned above, the purpose of this model 
is to minimize operating costs. The restrictions were built 
in compliance with the operating procedures, the physical 
constraints of the process and demand. 

Nomenclature used in the Model

Indexes:

tq - represents the tank number: tq = 1,2,...,TQ
c - represents the customer number: c = 1,2,...,C
t - represents the time interval number: t = 1,2,...,T

Sets:

CTQ - set formed by tanks tq
CC - set formed by customers c
CT - set formed by time interval t

It is worth noting the use of subscripts to represent the 
tanks, the customers or the time intervals involved in the 
parameters and variables. 

Parameters:

CBc - pumping cost for the C customer (mone-
tary units / thousand m3);

CAtq - storage cost in tq tank (monetary units / 
thousand m3);

CTRtq - exchange of tq tank cost that receives 
production (monetary units);

QRmin - minimum flow received by tanks tq 
(thousands m3/h);

QRmax - maximum flow received by tanks tq 
(thousands m3/h); 

QEminc - minimum flow of dispatch to customer c 
(thousand m3 / h); 

QEmaxc - maximum flow of dispatch to customer 
c (thousand m3 / h); 

Volmintq - minimum capacity allowed in the tank 
tq (thousand m3); 

Volmaxtq - maximum capacity allowed in the tank 
tq (thousand m3); 

Volinitq - volume in the tank tq at the beginning 
of process (thousand m3); 

DEMc - customer c diesel demand (thousand 
m3). 

Binary Variables:

Continuous Variables:

diesel volume received by the tank tq over the time 
interval t;

diesel volume sent by tank tq to customer c over 
time interval t;

diesel volume stocked in tank tq over time t;

it marks the strt time of receipt of the client c;

It marks the end time of receipt of the client c;

Objective Function:

For this model it is assumed that the optimum operation 
of the transfer and storage problem is that which minimizes 
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the process operating costs, defined by pumping shipping 
costs added to the product cost of storage in the tanks and 
finally added to the cost of transition by exchanging tanks at 
the receiving process operation.

(5)

Restrictions: 

One tank can not receive and send diesel at the same 
time. Therefore, there are three possible states for the tank: 
receiving, sending or idle. 

(6)

As the product flow of the process is continuous, there 
will always be a tank for receiving diesel each time interval.

(7)

Only one tank will be able to send diesel to a certain cus-
tomer over each time interval.

(8)

When a customer starts receiving diesel, must do so wi-
thout interruption. Therefore, will have only one variable of 
beginning and end equal 1.

and (9) 
and 
(10)

The start time and end of pumping are stored in the auxi-
liary variables TIc e TFc.

and
(11) 
and 
(12)

The receiving flow should be between maximum and mi-
nimum flow stipulated if variable Rectq,t is equal to “1”. If va-
lue of variable Rectq,t is “0”, the flow QRtq,t is also equal to “0”.

(13)

The sending flow should be between minimum and maxi-
mum flow stipulated if variable Envtq,c,t is equal to “1”. If value 
of variable Envtq,c,t is “0”, the flow QEtq,c,t is also equal to “0”.

(14)

The volume of a tank at a certain time interval shall be 
equal to incial volume, plus the volume received from the 
process less the volume sent to customers until this time in-
terval.

(15)

The tanks volume shall be always between minimum and 
maximum volume determined.

(16)

The customers demand should be fullfiled in it’s entirety.

(17)

The transition occurs when in a time interval a certain 
tank is receiving from the process and in the following inter-
val another tank is receiving.

(18)

(19)

(20)

The following restrictions makes the variable XIc,t assumes 
value “1” if in the interval (t-1) the customer is not receiving 
and begins to receive in the interval t and assumes value “0” 
for any other situation.

(21)

(22)

(23)

The following restrictions makes the variable XFc,t assu-
mes value “1” if in the interval (t - 1) the customer is recei-
ving and begins to not receiving in the interval t and assu-
mes value “0” for any other situation.

(24)
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(25)

(26)

The restrictions (21) to (26) do not contemplate the first 
time interval. If at beginning of period a tank is pumping, 
this will be the start of pumping. No pump may close in the 
first interval.

and

(27) 
and  
(28)

5.	MODELING AND METHODOLOGY OF GASSH - MLIP

The model used for the problem is generated from the 
MILP model with uniform discretization of time (Section 4). 
For the resolution, this model MILP is modified to be solved 
by PL. This change includes the removal of some restrictions 
and binary variables, and linear relaxation of the remaining 
binary and integer variables. Some variables removed from 
the model are handled by a Genetic Algorithm Steady State 
Hybrid (GASSH) and other through a procedure. The values 
are entered as data in the model LP, which is then resolved 
by 8.0 LINGO application. The value of the resulting objecti-
ve function is used as the value of the aptitude function for 
GASSH. After finishing the process of GASSH, the result is en-
tered as data in the model in MILP. This model is then solved 
by LINGO 8.0 using the branch and bound technique. Figure 
2 shows a simplified flowchart of this modeling.

The variables Rectq,t, tq = 1,...,TQ, t = 1,...,T  They were 
treated by GASSH. Since this variable is binary, the indivi-
duals of the population of GASSH were formed by randomly 
generating vector composed of binary digits “0” and “1”. A 
procedure was developed to generate these chromosomes 
in order to satisfy the restriction (7) which requires that the-
re will always be one and only one tank receiving the output 
in each time interval. Therefore, for an individual construc-
tion should have in each time interval , one and 
only one tank  with binary variable value equal 
“1”. As the binary variables TRtq,tq’,t with  and 

 depends exclusively from variables Rectq,t, a proce-
dure was implemented to find them, satisfying the restric-
tions (18), (19) and (20). The procedure verifies, for all tank 
combinations two by two, if the Rectq,t  variables in the time 
interval t and (t – 1) are equal “1”. If so, the TRtq,tq’,t variable 
will have value “1” in the interval t. For any other situation, 
the variable takes the value “0”. This check is made for the 
time intervals . 
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Figure 2. Fluxogram of MILP – Evolucionary Computation
Source: Barboza (2005)

To find the value of the aptitude function, the following 
steps are followed: chromosome data extraction (Rectq,t, tq 
= 1,..., TQ, t = 1,...,T variables); application of the procedu-
re to generate TRtq variables tq ‘, t; insertion of data in the 
LINGO PL 8.0 model; Resolution of this model using the sim-
plex method and obtaining the objective function value to 
be used as the aptitude function value. 

The AGSSH implemented showed the necessity of inclu-
ding a more aggressive local search after a number of ite-
rations in order to get out of minimum local. This search 
occurs after a certain number of iterations, considered as 
variable parameter of GASSH. This search consists of selec-
ting an individual of the population and comprehensive ex-
change of variable values Rectq,t. The individual generated by 
the change to get better results for the aptitude function will 
be inserted in the population.

The operators of selection, crossover and mutation used 
in GASSH are:

Operator of selection: suggested by Mayerle (1994) using 
the following formula:

(29)

where: R is the set of chromossomes m; rj is the chromos-
some j-eth; rnd   is a random number uniformly distrib-
uted;  is the function that s the function that returns the 
smallest integer greater than x.

Crossover: of two points. This crossing was specialized 
for the configuration of the chromosomes involved, in or-
der to generate new viable individuals compared the res-
triction (7).
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Mutation: simple mutation. A time interval is randomly 
chosen for your binary string is modified. Draws then a tank, 
with the restriction that its value should be “0”. Change this 
value to “1” and the tank that was “1” becomes “0”.

Srinivas and Patnaik (1994) adaptive rates were applied 
for the probability of recombination (crossing) pc and the 
probability of mutation pm, in order to avoid premature con-
vergence of GA for a great location. To minimize problems, 
consider f’ as the lowest value of aptitude among individuals 
chosen for parents, fmin, the lowest value of aptitude and fmax 
the highest value of aptitude, respectively, among all indivi-
duals in the population. The formulas (30) and (31) calculate 
the crossover and mutation probabilities, respectively.

(30)

(31)

The parameters k1, k2, k3 e k4 are real numbers in the in-
terval  with k1 < k2 e k3 < k4.

The pseudocode of genetic algorithm used in this method 
is shown below:

Algorithm GASSH

Initialize the population P with chromosomes N
Evaluate individuals in population P
Order the P population in ascending order by the aptitude value
Repeat
   If the operator application of recombination with probability pc is true so
      Select two individuals in P
         Apply the recombination operator
         Evaluate the generated individuals 
         Insert those individuals in P according with their aptitude
      If the operator application of mutation with probability pm is true so
Select one individual in P
         Apply the mutation operator
         Evaluate the generated individual 
         Insert this individual in P according with your aptitude
      If the iterations number for hybridization was achieved, then
Make local search
Up to a maximum of generations
End

6.	 IMPLEMENTATION AND RESULTS

The results are displayed for models with discrete time 
representation with the implementation of methodologies: 
Branch and Bound algorithm using the LINGO 8.0 applica-
tion and GASSH - MILP. The LINGO 8.0 computer application 

used was provided by the Graduate Program in Numerical 
Methods in Engineering, Federal University of Parana. The 
implemented computer programs were developed with Vi-
sual Basic 6.0 application (VB 6.0) in the Enterprise Edition. 
The implementation of GASSH approach - MILP we used two 
modules in VB, provided by LINDO Systems Inc., for inte-
gration between VB 6.0 and 8.0 LINGO. For the described 
model were made two groups of different tests to obtain re-
sults: model resolution in MILP using LINGO 8.0 application 
and implementation of GASSH - MILP methodology.

The used data for these groups was:

•	 Tanks number: TQ = 4; 

•	 Customers number: C = 2; 

•	 Time intervals number: T = 24;

•	 Pumping cost for the customers: CB1 = 0,15 
monetary units/thousand m3 and CB2 = 0,2 
monetary units/thousand m3 of product shipped;

•	 Tank storage cost: CAtq = 0.01 monetary units / 
thousand m3 of product stored in any tank;

•	 Exchange cost: CTRtq = 2,00 monetary units for 
each exchange made between tanks on the re-
ceipt operation;

•	 Minimum flow of receipt by the tanks: QRmin = 0,6 
thousand m3/h;

•	 Maximum flow of receipt by the tanks: QRmax = 0,7 
thousand m3/h;

•	 Minimum flow sent to the customer c: QEmin1 = 0,5 
thousand m3/h and QEmin2 = 0,9 thousand m3/h;

•	 Maximum flow sent to the customer c: QEmax1 = 0,6 
thousand m3/h and QEmax2 = 1 thousand m3/h;

•	 Minimum volume allowed in the tanks: Volmintq = 1 
thousand m3 for all the tanks;

•	 Maximum volume allowed in the tanks: Volmaxtq = 
16 thousand m3 for all the tanks;

•	 Volume in the tank tq early in the process: Volini1 
= 7 thousand m3, Volini2 = 1 thousand m3, Volini3 
= 1 thousand m3 and Volini4 = 1 thousand m3;

•	 Diesel demand for each customer c: DEM1 = 5 thou-
sand m3 and DEM2 = 6 thousand m3;
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6.1 MILP modelling results with discrete time represen-
tation

The above data applied to the MILP model resulted in 
390 continuous variables, 766 integers and a total of 2149 
restrictions. The model was run 25 times by LINGO 8.0, to 
meet the great value of 6,285 monetary units. Table 1 shows 
the values for the average and standard deviation for the 
number of iterations performed by LINGO 8.0 and the time 
spent in the process.

Table 1. MLIP model results

Statistics Nº of Iterations Computational 
Time (s)

Média 743124,8 1359,4
Desvio Padrão 273218,7 480,5

Source: Barboza (2005)

6.2 Results for the GASSH – MILP methodology

To obtain the results for the GASSH-MILP model were 
performed 135 rounds of testing, varying the parameters: 
population size and the required number of iterations to 
perform GASSH local search (hybridization). Data on the 
number of tanks, customers and time intervals shall be in 
accordance with the model in LP LINGO 8.0, connected to 
the program. In each test they were saved all individuals 
with value of aptitude function lower then 6.9, and this va-
lue was 10% higher than the optimum value (resolution LP) 
of 6.266523 monetary units. 

In rounds testing was combined the following parame-
ters:

•	 Population Size: 40, 45 e 50;

•	 Number of iterations of local search (hybridization): 
100, 115 e 125.

•	 For adaptive probabilities was used values of k1 = 
0,5, k2 = 1, k3 = 0,1 and k4 = 0,5. 

Table 2 show descriptive statistics of GASSH iterations 
number, LINGO 8.0 iterations number, computational time 
and aptitude function obtained from the results, separated 
by intervals to the value of aptitude function f.

The result for the overall average of computational time 
in minutes was 16 minutes and 59 seconds with a standard 
deviation of 8 minutes and 19 seconds. Through the average 
of LINGO iterations number and the computational time of 
the developed program calculated the performance of 1,006 
LINGO iterations per second.

Table 2. Descriptives statistics of GASSH – MILP methodology 
testing (Average ± standard deviation)

Function 
gaps f

Nº of 
GASSH 

Iterations

Nº of 
LINGO 

Iterations

Compu-
tational 
Time (s)

Aptitude 
Function 

Value

f = 6,285 908 ± 502      1229718 
± 623219 1219 ± 621 6,285 ± 0

6,285 < f ≤ 
6,47 679 ± 261 928961 ± 

347005 921 ± 352 6,353 ± 
0,056

6,47 < f ≤ 
6,66 634 ± 241 860666 ± 

307462 856 ± 313 6,530 ± 
0,025

6,66 < f ≤ 
6,9 601 ± 271 837905 ± 

365698 834 ±372 6,790 ± 
0,071

Source: BARBOZA (2005)

Table 3 shows the average number of iterations GA, LIN-
GO iterations number and computational time for each com-
bination of parameters population size and number of ite-
rations for hybridization when the optimum result of 6,285 
was obtained. The improved performance can be observed 
in population size equals 45 and number of iterations for hy-
bridization equal to 125.

Table 3. Average for the great result of the GA-MILP methodology

Popula-
tion Size

Nº of 
Hybri-

dization 
Iterations

Nº of GA 
Iterations

Nº of 
LINGO 

Iterations

Compu-
tational 

Time 
(seconds)

40 100 1211 1626152 1609

40 115 971 1306102 1291,7

40 125 940 1219458 1207,2

45 100 786 1100281 1091,5

45 115 845 1152047 1185,3

45 125 732 993706 978,6

50 100 735 1056174 1032,9

50 115 1079 1440459 1428,9

50 125 873 1173083 1149,5

Median - 908 1229718 1219,4
Source: Barboza (2005)

Figure 3 show the behavior of GASSH iterations number 
compared to the aptitude function value.

To illustrate the number of LINGO 8.0 iterations, com-
pared to the aptitude function value, the graph on Figure 4 
was constructed.

Finally, Figure 5 illustrates the computational time (in se-
conds) compared to aptitude value.

Observing Figures 3, 4 and 5, we can see a similarity 
in the behavior of the results for number of GASSH ite-
rations, number of LINGO iterations and computational 
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time with respect to the aptitude function value. Mo-
reover, these graphs show a marked variability and are 
observed local maximum points, close to 6.76; 6.55 and 
6.28. At these points, when the algorithm has reached lo-
cal minima, a greater number of GASSH iterations, more 
iterations LINGO and greater computational time has 
been spent, generating a greater computational effort to 
continue the search. 

An analysis was performed in order to investigate the 
influence of population size and iterations number for hy-
bridization on the results of GA iterations number, LINGO 
iterations number and computational time when it reach 
great result.

Initially, it estimated the Pearson correlation coefficients 
between the variables number of iterations of the GA, num-
ber of LINGO iterations and computational time, two at a 
time and tested the null hypothesis of no correlation versus 
the alternative hypothesis of correlation. The results were 
considered statistically significant at the 0.05 level. Correla-
tion coefficients r showed a strong association between the 
number of iterations of the GA and the number of iterations 
LINGO (r = 0.9913) between the number of iterations of 
the GA and computational time (r = 0.9875) and between 
number of iterations of LINGO and computational time (r = 
0.9978). Therefore, analysis was made only for the number 
of iterations GA.

Considering the levels 40, 45 and 50 for the population 
size factor and the levels 100, 115 and 125 for the num-
ber of iterations for hybridization factor, we performed an 
analysis of variance to evaluate the influence of the fac-
tors on the average number GA iterations to achieve the 
optimum result. Initially, we tested the null hypothesis of 

no interaction between the population size and number of 
iterations for hybridization. The result indicated that the-
re is not this interaction (p = 0.2307). Then, when testing 
the null hypothesis of equal average for the three levels of 
iterations for hybridization, it was found that there is no 
significant difference (p = 0.5992). Similarly, for the three 
levels of the population, there was no significant difference 
in the number of GA iterations (p = 0.0553). However, for 
a significance level of 0.05, it can be said that for the size 
of the population there is a tendency to statistically signifi-
cant difference between levels 40, 45 and 50 of the popu-
lation, compared to the average number of GA iterations to 
achieve the optimal result.

The similar behavior of the number of GA iterations, 
number of LINGO iterations and computational time for 
the population size combinations and number of itera-
tions for hybridization can be observed in the graphs of 
Figures 6, 7 and 8, constructed from Tables 4, 5 and 6, 
of the average obtained with all the results for each of 
these variables. The graphs confirm the results of the 
correlation coefficient. The improved performance can 
be observed in population size equals 45 and number of 
iterations for hybridization equal to 100 (Tables 4, 5 and 6 
and Figures 6, 7 and 8).

Table4. Average for number of GASSH iterations according with 
the number of iterations for hybridization and population size 

Iterations number for hybridization
Population 

size 100 115 125

40 834 805 710
45 640 746 696
50 661 979 901

Source: Barboza (2005)
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Figure 3. GASSH iterations number compared to aptitude function value
Source: Barboza (2005)
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Figure 6. Number of GASSH iterations according with number of 
iterations for hybridization and population size

Source: Barboza (2005)

Table 5. Average for number of LINGO iterations according with 
number of iterations for hybridization and population size

Iterations number for hybridization
Population 

Size 100 115 125

40 1142776 1094358 941442
45 907578 1013426 944055
50 941944 1085100 1200496

Source: Barboza (2005)
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Figure 4. Number of LINGO Iterations compared to aptitude function value
Source: Barboza (2005)
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Figure 5. Computational time according aptitude function value
Source: Barboza (2005)
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Figure 7. Number of LINGO iterations according with number of 
iterations for hybridization and population size

Source: Barboza (2005)

Table 6. Average for computational time according with 
number of iterations for hybridization and population size

Iterations number for hybridization
Population 

size 100 115 125

40 1134 1079 932
45 901 1039 939
50 918 1069 1184

Source: Barboza (2005)
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Figure 8. Computational time according with number of iteration 
for hybridization and population size

Source: Barboza (2005)

7.	ANALYSIS OF RESULTS AND CONCLUSIONS

In this work were discussed applications for production 
scheduling optimization (scheduling) in an oil refinery. The 
problem addressed was the Diesel transfer and storage, 
which includes sending diesel tanks and the subsequent 
distribution of this product to customers. The development 
and implementation of new methodologies aimed at obtai-
ning efficient solutions that prioritize the financial return in 
order to become economically viable its practical results.

The process of diesel oil transfer and storage of oil refinery 
was analysed in order to obtain a model with discrete repre-
sentation in time with linear characteristics. Being a model 
MILP with the time discretization, a problem arises in the 
resolution by LINGO 8.0 application is that reducing the in-
terval size implies a number of intervals (T) higher and thus a 
larger number of binary variables, so that the computational 
time increases. This increase in time is due to the fact of the 
matter is the combinatorial type. In this case, increasing the 
number of integer variables increases the number of possi-
ble combinations for the solution vector, which can become 
unaffordable problem in terms of computational time, in the 
resolution with branch and bound algorithm.

For MILP model with the application of LINGO 8.0 were 
performed 25 tests that resulted in the great value of 6,285 
monetary units to the objective function. Table 4 shows the 
results obtained for the number of iterations and computa-
tional time (seconds). The average for the number of itera-
tions was 743,125 with a standard deviation of 273,218.69. 
For the time, the average was 22 minutes and 39 seconds 
with a standard deviation of 8 minutes and 52 seconds.

Table 7 shows the means of LINGO 8.0 iterations and 
computational time of GASSH-MILP and MILP methodolo-
gies according to the intervals of the aptitude function (f). 
Based on these data comparisons were made between the 
two methodologies regarding the performance.

Table 7. Average summary for MILP  
and GASSH-MILP  
methodologies

Function 
gaps f

Methodo-
logy

LINGO Itera-
tions

Computa-
tional Time 
(seconds)

f = 6,285 (re-
sultado ótimo)

PLIM 743125 1359,4
AGEEH – PLIM 1229718 1219

6,285 < f ≤ 
6,47 AGEEH – PLIM 988961 921

6,47 < f ≤ 6,66 AGEEH – PLIM 860666 856
6,66 < f ≤ 6,9 AGEEH – PLIM 837905 834

Source: Barboza (2005)

For optimal results at the GASSH-MILP methodology has 
an iterations number 65.5% higher and computational time 
10.3% lower than in MILP methodology. If , 
the GASSH-MILP methodology results in a number of itera-
tions 33,1% higher and computational time 32,2% lower. 
If , GASSH-MILP methodology results in a 
number of iterations 15,8% higher and computational time 
37% lower. And if , GASSH-MILP methodology 
results in a number of iterations 12.8% higher and com-
putational time 38.6% lower. In summary, for GASSH-MILP 
methodology, compared with the MILP methodology, the 
further the optimal value, the lower is the loss compared 
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to the number of iterations and the greater the gain com-
pared to computational time. In general, it is observed 
that the performance of the GASSH - MILP methodology, 
regarding computational time was better. It follows, there-
fore, that the application of the GASSH - MILP methodol-
ogy, for instance used, should be considered the benefit of 
a reduced computational time for obtaining a good result, 
which may not be optimal. 

The results obtained for the GASSH-MILP methodology 
show that the performance depends on the parameters 
used. From the analysis it can be stated that the number of 
GA iterations influence more on performance than the num-
ber of iterations for hybridization. The parameters used in 
this study were chosen based on previous testing rounds. 

It should be noted that the use of adaptive recombina-
tion and mutation probabilities makes the further away an 
individual is the population’s first, higher these probabilities. 
Thus, this individual ends up being induced to make the re-
combination and mutation operations. On the other hand, 
the first individuals in the population will always have lower 
probability to the chance of these operations is reduced in 
order to preserve these individuals.

For tests carried out in this work, analyzing the results of 
Table 3 shows that the best performance in terms of num-
ber of iterations of the GA, number of LINGO iterations and 
computational time to achieve optimum results, it was ob-
served to size population equals 45 and number of iterations 
for hybridization equal to 125.

The variability of the aptitude function values analyzed in 
Figures 3, 4 and 5 shows a similar behavior when is observed 
the number of GASSH iterations, the number of LINGO it-
erations and computational time. As the value of the func-
tion approaches the great value (6.285), this variability de-
creased and there has been a sharp growth that generates 
a cost in relation to the performance of GA algorithm. This 
occurs because the algorithm reaches a local minimum and 
is in need of an extra effort to get out of this minimum and 
be directed to the optimal result.

Finally, it is concluded that the GASSH-MILP methodol-
ogy can contribute significantly to the problem of product 
transfer and storage in oil refineries. The results showed that 
the methodology is appropriate, taking into account the re-
duction of computational time, without much loss in quality 
solution.
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